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Summary

This report documents an internship project at IMDA where a classifier was

developed to distinguish malicious SSL/TLS certificates from benign ones.

A large corpus of certificate data was collected, parsed into 22 fields and

engineered into 32 features, including JA3 fingerprints, certificate lifetimes

and issuer information. Various unsupervised and supervised models (Isola-

tion Forest, One-Class SVM, Half-Space Trees, embeddings with k-NN, Ran-

dom Forest and Graph Convolutional Networks) were evaluated. The best-

performing model achieved an F1 score of 0.994 on a balanced, deduplicated

test set, demonstrating strong potential for detecting malicious certificates.

Subject Descriptors:

• I.2.6 Learning

• I.5.1 Models (Trees, Neural nets, SVMs)

• I.6.4: Model Validation and Analysis

• K.6.5 Security and Protection

Keywords: anomaly detection, machine learning, cybersecurity, unsuper-

vised learning, feature engineering

Implementation Software and Hardware: Python (VS Code IDE),

scikit-learn, pandas, NumPy; developed and tested on Lenovo ThinkPad

T14 running Windows 11.
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Chapter 1

Introduction

In this project, I am tasked to build a classifier to distinguish malicious

SSL/TLS Certificates from benign ones. Such digital certificates validate the

identity of a website, organization, or server and provide a trusted platform

for the user to connect and share information securely. However, malicious

certificates used by malware or other phishing attacks have become increas-

ingly common. By building anomaly detection models and replicating re-

search studies, the best F1 score I derived is 0.994 on a small set of unseen

test data.

1.1 Background

Secure Sockets Layer/Transport Layer Security (SSL/TLS) is a protocol to

create secure communications across networks. When a client connects to a

server, they perform a handshake to negotiate encryption methods and ex-

change certificates to verify identities. Such certificates validate the identity

of a website, and they come in a format called X.509, which is what you see

in Figure 1.1.

For this project, we only focus on a few of these fields, namely Issuer

Name, Subject Name, Validity Period. I also have access to fields relating to

the JA3 fingerprint.

Another concept to grasp here is the certificate chain. A certificate is
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Figure 1.1: Typical fields of a X.509 Certificate
(What Is an x. 509 Certificate and How Does It Work?, 2024)

usually signed by a trusted root authority, known as a Certificate Author-

ity (CA). Root certificates can then sign intermediate certificates, which in

turn signs leaf certificates, conveying trust across the chain. However, some

certificates are self-signed, meaning that they are not signed by a reputable

CA, but rather sign themselves. Such certificates can be for testing purposes,

and are generally not trustable. In this project, we define chain length as

the number of certificates in this chain. This concept comes up again in the

features that I engineer.
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Chapter 2

Data

2.1 Initial Dataset

I was given a sample dataset (n ≈ 67k), followed by about 49 CSV files of

about 70k records each. I combined this bigger dataset into about 3 million

entries. For training, I took a sample from this bigger dataset.

Each CSV had 3 columns: certificates, JA3 fingerprints, and count. Cer-

tificates contained a JSON formatted string with each certificate in the chain

of trust being one JSON object. The JA3 fingerprints column contained a

string of dash separated numbers, detailing SSL/TLS Version, Cipher Suites,

Extensions, Elliptic Curves, and Elliptic Curve Point Formats. Count is a

residual of data processing.

I was also given a dataset (n = 2124) that had high probability of being

malicious from a certain malware family. I combined this malicious data with

an equal amount of assumed benign data from my initial dataset to create

a labelled validation dataset for evaluation metrics. For my unsupervised

learning models, I created a 50/50 split with my validation data. This dataset

(Dataset A), was split into 50% validation for hyperparameter tuning, and

50% unseen test set for evaluation.

For my supervised learning models (Dataset B), I split this into 60/20/20,

to 60% training, 20% validation, and 20% test.
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2.2 Parsing Data

The parsed dataset contains a total of 22 fields, as detailed inAppendix A.

From the certificate data, both the issuer and subject information were ex-

tracted and split into individual columns for each attribute—namely: Coun-

try (C), Locality (L), Organization (O), Organizational Unit (OU), Common

Name (CN), and State (ST). This results in 12 fields (6 from the issuer and

6 from the subject). Additional certificate-related fields include the issuance

date, expiry date, and Subject Alternative Names (SANs), bringing

the total to 15 fields derived from certificate metadata.

Five additional fields were generated from JA3 fingerprint data, and

the final two fields—chain index and chain length—were introduced dur-

ing parsing of the certificate chain. For example, if a certificate chain consists

of three certificates, each certificate is assigned a chain index (0, 1, 2), while

the chain length remains fixed at 3 across all certificates in that chain.
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Chapter 3

Feature Engineering

The total feature list consists of 31 features, where the full list is detailed in

Appendix B. Every subsection describes the part of the original data that

the features below it are engineered from. This section details a few of the

more interesting features that were derived, the rest are presence features or

one-hot encoded.

3.1 Issuer Name

3.1.1 Issued from Free Certificate Authorities (CA)

I have listed a few free certificate authorities:

• Let’s Encrypt

• ZeroSSL

• SSL Corporation

• Cloudflare, Inc.

• Buypass

• CAcert Tech.

Taken from Ondara (2024) and online research, there is a correlation be-

tween certificates being issued from free CAs and malicious activity (Fasllija

et al., 2019).
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3.1.2 CA Z-Score Lookup (Dropped Feature)

Some Certificate Authorities (CAs) are statistically more likely to issue mali-

cious certificates than others. Splunk (2023) conducted a large-scale analysis

of over 5 billion SSL/TLS certificates, producing a dataset that ranks

CAs based on their association with malicious activity. For each CA, Splunk

computed the proportion of risky certificates issued relative to their total

issuance volume, then transformed these proportions into z-scores based on

the standard normal distribution. Higher z-scores indicate greater likelihood

of malicious association.

Splunk provided two separate datasets: one for root CAs and another

for issuer CAs, each using a different parsing format. To match these

formats, a custom parser was implemented to generate canonical strings by

concatenating certificate fields with slashes. For example:

/C=US/ST=Washington/L=Redmond/O=Microsoft Corporation/CN=Microsoft

ECC Root Certificate Authority 2017

These parsed strings were used to look up the corresponding z-scores in the

Splunk datasets.

Each certificate was then assigned a z-score based on this lookup. If the

issuer CA z-score was available, it was used directly. If not, the root CA

z-score was used. If neither was found, a default value of 0 was assigned.

The resulting z-score served as a feature to evaluate the trustworthiness of

the issuing CA.

However, this feature was ultimately dropped after an ablation

study conducted using HST (Half Space Trees) showed that its inclusion

did not improve model performance significantly. Moreover, the additional

processing overhead required to compute the z-scores was deemed unjustified

given the minimal performance gain.

3.1.3 Suspicious Fields

This feature leverages a blacklist compiled by Abuse.ch’s Top Malicious SSL

Common Names (2021), which identifies known Common Names frequently
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associated with malicious SSL certificates. Specifically, the feature checks

both the issuer Common Name and issuer Organization against entries

from this list.

Some malicious entries follow unconventional formatting patterns, such

as: C=US, ST=Denial, L=Springfield, O=Dis. To ensure accurate detec-

tion, the check was extended to additional fields including Country (C),

State (ST), Locality (L), and Organization (O) for an exact field-wise

match.

A boolean flag, has suspicious fields, is set to True if any match is

found, indicating potential presence of suspicious certificate metadata.

3.2 Subject Name

3.2.1 Length of Domain

The domain is extracted by parsing the Subject Common Name (CN), specifi-

cally by stripping any left-side wildcard (e.g., *.example.com becomes example.com).

The feature length of domain represents the total number of characters in

the resulting domain string.

3.2.2 Entropy of Domain

To identify potentially algorithmically generated or obfuscated domain names,

the Shannon entropy of each domain is calculated using the following formula:

H(X) = −
n∑

i=1

pi log2 pi

This entropy-based feature is adapted from Feature 7 of Fasllija et al.

(2019), and serves to quantify the randomness of character distribution within

the domain name. Higher entropy values may indicate suspicious or auto-

generated domains.
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3.2.3 Number of Hyphens (Dropped)

This feature counts the number of hyphens present in the domain name,

based on the hypothesis that longer, hyphenated domains may be indicative

of malicious behavior. This approach is adapted from Feature 8 of Fasllija et

al. (2019). However, after further evaluation, this feature was dropped due

to the observed distribution of hyphen counts in malicious certificates closely

mirroring that of the overall dataset.

3.2.4 Inner Top-Level Domain (TLD) in Subdomain

Adapted from Feature 5 of Fasllija et al. (2019), this feature flags the presence

of popular top-level domains (e.g., org, com, net) within inner subdomains.

As noted in their study, “attackers may include popular top-level domains in

the inner domain in order to mislead users that are familiar with them into

trusting a fraudulent website.” The detection of such patterns is therefore

considered suspicious.

3.2.5 Suspicious TLD

Inspired by Feature 4 of Fasllija et al. (2019), this feature targets domains

using newly introduced or low-cost TLDs, which have been widely exploited

by attackers. A reference list of suspicious TLDs was constructed using

Fasllija et al.’s dataset in conjunction with The Spamhaus Project (2025).

To operationalize this feature, a one-hot encoding scheme was applied to

capture the most frequently observed suspicious TLDs: .tech, .info, .xyz,

.top, and .vip. All remaining TLDs were grouped into an others category.

3.3 JA3 Fingerprint

3.3.1 JA3 Hash

This feature leverages the JA3 fingerprinting method, which encodes TLS

client hello parameters into a standardized fingerprint. By applying an MD5
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hash to the original JA3 string, I compare the resulting hash against a known

list of malicious JA3 fingerprints provided by Abuse.ch (2021). If a match

is found, the boolean feature is malicious hash is set to True, indicating a

suspicious TLS client configuration.

However, this feature was ultimately dropped due to a lack of relevance

in the available dataset. The malicious samples available did not contain

JA3 hash information, rendering the feature inapplicable. Additionally, the

potential for MD5 hash collisions and false positives further diminished its

reliability.

3.4 Issuer and Expiry Dates

3.4.1 Certificate Lifetime

Using the certificate’s issued date and expiry date fields, the certificate life-

time is computed by taking the difference between the two dates. After

converting both fields to pandas.Datetime format, the result is stored as

a numerical variable, cert lifetime days, representing the total validity

period of the certificate in days.

3.5 Subject Alternate Name (SAN)

3.5.1 SAN Count

The feature altnames count records the total number of Subject Alternate

Names (SANs) present in a certificate. Anomalously high or low SAN counts

may indicate malicious intent or misconfiguration.

3.5.2 Average SAN Shannon Entropy (Dropped)

The feature san entropy avg calculates the average Shannon entropy across

all SANs in a given certificate. Algorithmically generated SAN entries are

expected to exhibit higher entropy. However, after plotting a histogram of

this feature, its distribution was found to closely resemble that of the domain
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entropy feature, offering little additional signal. As a result, this feature was

dropped.

3.5.3 Presence of Common Name (CN) in SAN

The boolean feature is CN in SAN checks whether the Subject Common

Name (CN) is also listed among the SANs. While this condition doesn’t

occur in only 0.66% of all certificates, further analysis showed a notable dif-

ference in its distribution between malicious and benign certificates. This

suggests that it may be a useful feature and is thus retained.

3.6 Miscellaneous

3.6.1 Number of Missing Fields

The feature number of missing fields counts how many expected fields

are absent in a given certificate. According to NCC Group (2021), there

is a statistical relationship between the number of missing fields and the

likelihood of a certificate being malicious.

3.6.2 Chain Length

This feature captures the length of the certificate’s chain. While only the

leaf certificate is retained for modeling, the total chain length is preserved as

a numerical feature, chain length.

3.6.3 Presence Features

To retain feature variance across certificates, a set of 13 binary presence

indicators was engineered. These include boolean flags for the presence of

common fields in both the Subject and Issuer sections: Country (C), State

(ST), Locality (L), Organization (O), Organizational Unit (OU), Common

Name (CN), and Alternate Names (SAN). Each feature indicates whether

the corresponding field is present in the certificate.
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Chapter 4

Results

Model Accuracy Precision Recall F1 Score
Isolation Forest 0.9463 0.9181 0.9791 0.9476
OCSVM 0.9651 0.9470 0.9848 0.9655
HST 0.9228 0.8751 0.9848 0.9267

Table 4.1: Unsupervised Learning Performance Metrics on Balanced, De-
duplicated Unseen Test Set.

Model Accuracy Precision Recall F1 Score
Embeddings + kNN 0.9240 0.9357 0.9102 0.9228
GCN 0.9424 0.9944 0.8889 0.9387
Random Forest 0.9941 0.9886 1.0000 0.9943

Table 4.2: Supervised Learning models metrics on Balanced, De-duplicated
Unseen Test Set.

The tables above summarize the performance of both unsupervised and

supervised models on a balanced, de-duplicated test set. Among the unsuper-

vised models, OCSVM achieved the best overall results, with the highest F1

score and recall. For supervised models, Random Forest significantly outper-

formed the rest, attaining near-perfect precision, recall, and F1 score. These

results highlight the effectiveness of supervised learning when labeled data is

available, while also showing that OCSVM is a strong choice in unsupervised
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settings. However, the approaches will be compared in the following section

and a recommendation will be given at the end.
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Chapter 5

Approaches

5.1 Clustering

To explore unsupervised detection of malicious certificates, I initially exper-

imented with the KMeans algorithm. Using the elbow method, an optimal

value of k = 21 was estimated. While Gómez et al. (2023) used clustering

effectively with labeled malware family data, the absence of such labels in

this study limited interpretability, and clustering was not pursued further.

5.2 Isolation Forest

Isolation Forest was selected as a primary unsupervised approach for de-

tecting anomalous TLS certificates due to its scalability and interpretability.

Originally proposed by Liu et al. (2008), this method constructs an ensemble

of randomly generated binary isolation trees, where each split selects a feature

and threshold at random. Anomalous certificates—being rare and distinct—

tend to be isolated in fewer partitions, resulting in shorter paths and higher

anomaly scores. The algorithm’s linear time complexity and minimal mem-

ory requirements make it particularly well-suited for large-scale datasets such

as those used in this project. Moreover, recent studies, such as Ostertág and

Stanek (2024), have validated its effectiveness in detecting anomalies within

X.509 certificate transparency logs. In the context of this work, Isolation
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Forest achieved an F1 score of 0.9476 on a balanced, de-duplicated test set,

demonstrating its utility as a robust baseline for certificate anomaly detec-

tion.

5.3 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) algorithm is designed to identify anomalous

data points by comparing the local density of points to their neighbors. It

operates by measuring how much a data point deviates from its surrounding

points in terms of density. While LOF is effective in detecting outliers in

certain contexts, its quadratic time complexity makes it computationally

expensive, particularly for large datasets. Despite initial expectations, the

LOF model performed poorly on this dataset, and further analysis indicated

that it was not suited for this task. Consequently, LOF was excluded from

the final evaluation.

5.4 One-Class Support Vector Machines (OCSVM)

One-Class SVM is a variant of the traditional SVM algorithm, specifically

designed for outlier and novelty detection tasks. Unlike traditional SVMs,

which are typically used for binary classification, One-Class SVM trains ex-

clusively on data from a single class, referred to as the target class. The

algorithm learns a boundary or decision function that captures the distribu-

tion of the target class in the feature space, thereby modeling the normal

behavior of the data (Mounish V, 2024).

However, One-Class SVM has a quadratic time complexity, which can

become computationally expensive with large datasets. Despite this, initial

results indicate that it performed well on this project, and it emerged as the

best-performing model on my dataset, achieving high accuracy and F1 score

compared to other unsupervised methods.
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5.5 Half Space Trees (HSTs)

NCC Group (2021) used HSTs on live certificate streams and consistently

identified anomalies. This is an ensemble method, where multiple trees are

built and results are aggregated. This approach is the most promising one,

and hence I will delve deeper into explaining the algorithm.

5.5.1 Introduction

Tan et al., (2011) defines each HS-Tree consists as a set of nodes, where

each node captures the number of data items (i.e. mass) within a particular

subspace of the data stream. Mass is used to profile the degree of anomaly

because it is simple and fast to compute in comparison to distance-based or

density-based methods.

5.5.2 Methodology

The algorithm segments the data stream into 2 consecutive windows of fixed

size (n = 250) – the reference window and the latest window. During the

initial stage of the anomaly detection process, the algorithm learns the mass

profile of data in the reference window. Then, the learned profile is used

to infer the anomaly scores of new data subsequently arriving in the latest

window. New data that fall in high-mass subspaces is construed as normal,

whereas data in low-mass or empty subspaces is interpreted as anomalous.

As new data comes in, the algorithm learns its mass profile as well. When

the latest window is full, the newly recorded profile is used to override the old

profile in the reference window – so it always stores the latest profile to score

the next batch. Now, the latest window erases its stored profile to capture

that of the next batch. This repeats as long as the stream exists.

5.5.3 Definition

Tan et. al defines a Half Space Tree (HS-Tree) of depth h as a full binary

tree consisting of 2h+1 − 1 nodes, where all leaves are at the same depth h.
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A tree is constructed by picking a randomly selected feature. Then, we split

the feature space in half (the library that I use, River, randomly splits the

feature space with padding instead), creating a left and right child for the

node. This continues until maximum depth is reached.

5.5.4 Algorithm

Before creating a tree, the algorithm initialises a work space, randomly gen-

erates a synthetic range for each feature, creating a unique coordinate space

for every Half-Space Tree. This allows the trees to be constructed without

seeing any data, while maintaining an ensemble of diverse HS-Trees.

Once trees are constructed, we record the mass profile of the data by

traversing every instance through each tree. At each node, we increment the

mass count before recursively updating the mass count for subsequent levels

of the tree.

5.5.5 Anomaly Score

We score data based on their mass distribution. Let sn,t be the score of a

test instance x at a particular node n of a particular tree t, and a particular

maximum depth d. Let mi be the mass of a node at depth level i of the tree.

sn,t = mi ∗ 2i

We keep adding the node scores until we reach a terminal node. A terminal

node here refers to a node that reached the maximum depth, or a node that

contains limit instances or fewer, where limit is a parameter that defaults

to 0.1w (window size).

The tree score, st is then the summation of the scores of each node along

the path, increasing in depth.

st =
∑

sn,t

The anomaly score, S will then be the summation of each tree score in the
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ensemble.

S =
∑
t∈T

st

To fit machine learning convention, we take the inverted score, S ′ as 1 − S

so that a value closer to 1 is malicious, and a value closer to 0 is benign.

S ′ = 1− S

To interpret this, a node with smaller mass is likely to contain anomalous

data points due to the lack of similar points. Anomalies will end up with lower

scores then. The time complexity and space complexity for this algorithm is

amortised constant.

5.6 Embeddings + k-Nearest Neighbors (kNN)

Based on Shashwat et al., (2024), I try their approach to classifying certifi-

cates based on putting the data through a Large Language Model (LLM),

obtaining the embedding, and classifying a new certificate based on its near-

est neighbors. The methodology used in the paper consisted of a few steps.

1. Clean Data - fill missing values with NA

2. Process certificates and combine into issuer and subject string.

3. Embed issuer and subject string with Character BERT (C-BERT) sep-

arately and combine embeddings.

4. Setting Up a FAISS Vector Database for Similarity Search

5. k-NN Classification with Majority Voting

6. Evaluation

While this method relies on supervised data, I use our small set of curated and

labelled benign and malicious data to train and validate this model. From

the original parsed benign and malicious certificates, I drop all columns but

the 12 fields describing the certificate, such as the Country, Locality, State,
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Common Name, Organization, and Organizational Unit. After removing

duplicates, I decided to follow the parsing and embedding strategy used in

the paper by filling in empty fields with ”NA”, and joined the fields together

with commas as a delimiter. I embedded both issuer and subject separately,

and concatenated them together. I took benign and malicious data in a 1:1

ratio. The resulting dataset (n = 2532) was split into train (n = 2025) and

validation (n = 507) sets.

After embedding, I store the vectors in a Facebook AI Similarity Search

(FAISS) vector database, and conduct kNN search with the validation set.

While the paper suggested an optimal k of 5, I did some tuning and found

that my results achieved a result of k = 3. This approach was useful in under-

standing clustering of certificates, as similar certificates were often grouped

together.

5.7 Contrastive Learning

Han et al. (2024) proposed a contrastive learning method for unsupervised

malicious network traffic detection. Contrastive learning, a form of self-

supervised learning, aims to learn representations by comparing positive and

negative pairs of data points. In the context of anomaly detection, the

method works by embedding data points in a feature space where similar

instances (positive pairs) are close together and dissimilar instances (neg-

ative pairs) are far apart. This technique has shown promising results in

detecting anomalies in network traffic, where the focus is on learning useful

representations without requiring labeled data.

While contrastive learning could offer valuable insights for my use case,

especially for detecting anomalies in TLS certificates, the complexity of im-

plementing the method and the need for additional computational resources

made it infeasible for this project. As a result, contrastive learning was not

pursued, but it remains an area of potential exploration for future work.
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5.8 2-Layer Certificate Graph Convolutional

Network (GCN)

Liu et al. (2022) proposed a graph-based approach to detect malicious cer-

tificates by modeling the problem as a graph. In this approach, certificate at-

tributes and certificate documents are treated as nodes, while co-occurrence

information between attributes forms the edges between nodes. I imple-

mented this method using a labeled dataset with 4220 samples, consisting

of a balanced 1:1 split of benign and malicious certificates. The dataset was

divided into 80% for training, 10% for validation, and 10% for testing. The

training and validation sets were combined to build the graph corpus, while

the training set was used for model training. The validation set was masked

during training, and the final 10% of the dataset was used to construct a

separate graph for the test set.

This approach can be categorized as transductive learning (where the

validation set is part of the graph during training) and inductive learning

(where a separate graph is used for the test set). The distinction between

these two methods highlights different strategies for utilizing graph-based

models in machine learning.

5.8.1 Parsing

The certificate data is parsed into a list of lists, where each list represents an

individual certificate. Each field within the certificate is treated as a separate

item, and multiple items within the same field (e.g., Alternate Names) are

flattened and separated by commas.

5.8.2 Graph Nodes and Edges

In this graph-based approach, nodes represent both certificates and their

attributes. Edges between certificates and attributes are weighted using

Term Frequency-Inverse Document Frequency (TF-IDF). Here, term fre-

quency refers to how often an attribute appears in a certificate, while inverse
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document frequency quantifies the rarity of an attribute across certificates.

This weighting mechanism helps assess the importance of each attribute in

the graph.

For edges between attributes (Attribute-Attribute), we calculate Point-

wise Mutual Information (PMI), which measures the co-occurrence of two

attributes compared to their individual frequencies.

5.8.3 Building the Graph

The graph is represented as an adjacency matrix, using a sparse matrix

format from SciPy for memory efficiency. Each node is one-hot encoded

as a vector, following the approach used in the original paper. The graph

is constructed using the PyTorch Geometric framework, which allows for

efficient graph data handling and model training.

5.8.4 Training the Model

The architecture replicates the design in Liu et al. (2022), employing a

two-layer Graph Convolutional Network (GCN) consisting of: Graph Con-

volution → ReLU activation → Dropout → Graph Convolution → Linear

output layer. They suggest that any more layers result in a drop in model

performance.

5.8.5 Results

The transductive learning approach, where the validation set is part of the

graph corpus but is masked during training, achieved an F1 score of 0.9387.

In contrast, the inductive learning approach, where the test set is kept sep-

arate and a new graph is created for testing, resulted in an F1 score of only

0.5674.

5.8.6 Conclusion

Due to the poor performance on the inductive test data and the complex-

ities involved in graph data parsing, this approach is not recommended for
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production use.
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Chapter 6

Validation and Explanation

6.1 Locally Interpretable Model-Agnostic Ex-

planation (LIME)

With the predictions of my models, now it was time to validate and explain

the predictions. However, most of my anomaly detection models were black

boxes, and there were no inbuilt feature importance attributes I could find.

I started by running LIME on my models to reveal the top features that

contributed to the classification. However, as LIME is a local model, the

results were not generalizable globally. LIME on different models also yield

different results. As seen in Figure 6.1, the results were confusing to analyse

and often picked features that didn’t seem to align with domain knowledge.

There was a need for better explainability in my models. Hence, I turned to

supervised learning, specifically Random Forest.

6.2 Random Forest Feature Importance

I also evaluated feature importance using a Random Forest (RF) model

trained on a small labelled dataset. While this approach provides a global

view of feature relevance, the results (Figure 6.2) diverged significantly from

those obtained through LIME. Yet, this was more aligned with domain knowl-

edge. With the good results obtained from the RF model, this validated the
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Figure 6.1: LIME on HST, True Positive Instance

features that were picked.

6.3 Half Space Trees Feature Importance

Diving deeper into HSTs, I managed to print out and parase the actual

decision trees that were in the model. By referring to the source code, I

created a visualizer that showed where anomalies were isolated. By looking

at this, I could gain a clearer idea of which features resulted in anomalies.

In Figure 6.3, I traced out the decision path for a particular benign sample,

and this helped to explain the predictions in greater detail.
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Figure 6.2: Feature Importance for Random Forest

Figure 6.3: Half Space Trees Decision Path for a Benign Sample
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Chapter 7

Reflections

Throughout this project, I faced a number of challenges that required both

technical and problem-solving skills. One of the primary issues was the com-

putational complexity, as the large dataset (approximately 9 million rows)

required extensive processing time, often taking 2-3 hours per cycle, which I

managed by running tasks overnight. Additionally, working with data pre-

sented a learning curve, as I had little prior experience with data analysis

and had to quickly become proficient in using Pandas for data manipulation.

My initial use of Python notebooks became disorganized, and I eventually

refactored the code into modular classes, improving both the clarity and

efficiency of my work. Another significant challenge was scaling the data

correctly. Initially, I scaled the training and malicious datasets separately,

leading to inflated F1 scores due to mismatched data distributions. After

recognizing this, I ensured consistent scaling by applying the same trans-

formation to both the training and validation sets. Feature selection also

posed challenges, as some features were dropped due to skew or redundancy,

which improved the model’s performance. Lastly, the lack of labeled data for

training and validation was a constraint, but by combining a small labeled

dataset of malicious certificates with assumed benign data, I was able to pro-

ceed with model evaluation. However, the limited diversity of the malicious

data meant that the model’s generalization was constrained to only a few

malware families. These challenges were valuable learning experiences that
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contributed to the overall success of the project.

The bulk of this project was built with Python. Libraries used include:

scikit-learn, numpy, pandas, LIME, Matplotlib. I briefly used River, Seaborn,

PyTorch, and Transformers. I gained familiarity with unsupervised learning

models like Isolation Forest, Local Outlier Factor, One Class SVM, K Means

Clustering, and supervised learning methods like K Nearest Neighbors and

Random Forest. I also dipped my toes in Large Language Models such as

Character BERT, learning how to embed text and store in a vector database

like FAISS. I gained experience working with Graph Convolutional Networks,

and tinkered with PyTorch Geometric for graph data.
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Chapter 8

Conclusion

This project provided valuable insights into the application of machine learn-

ing techniques for detecting malicious TLS certificates. Through the use of

various unsupervised and supervised learning models, I was able to assess

the effectiveness of different algorithms in identifying anomalies in certificate

data. The results highlighted the strengths of models like One-Class SVM

and Random Forest, with the latter providing the best overall performance

on the dataset.

Ultimately, I learnt that F1 score is not everything when it comes to

evaluating a model. Constraints like implementation, time complexity, and

interpretability are paramount in ensuring that the model fits into a process-

ing pipeline, and that its predictions can be trusted.

Moving forward, I hope that the methodologies and lessons from this

project will be valuable in tackling similar problems in the future, especially

in the domain of cybersecurity.
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Appendix A

Initial Data Columns

1. TLSServerCertIssuer C

2. TLSServerCertIssuer L

3. TLSServerCertIssuer O

4. TLSServerCertIssuer CN

5. TLSServerCertIssuer OU

6. TLSServerCertIssuer ST

7. TLSServerCertSubject C

8. TLSServerCertSubject L

9. TLSServerCertSubject O

10. TLSServerCertSubject CN

11. TLSServerCertSubject ST

12. TLSServerCertSubject OU

13. TLSServerCertIssuedDate

14. TLSServerCertExpiryDate

15. TLSServerCertAltnames

16. SSL/TLS Version

17. Cipher Suites

18. Extensions

19. Elliptic Curves (Groups)

20. Elliptic Curve Point Formats

21. chain index

22. chain length
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Appendix B

Full List of 31 Features

B.1 Engineered Features (n = 12)

• chain length

• zscore

• cert lifetime days

• altnames count

• is CN in SAN

• number of missing fields

• issued from free CA

• length of domain

• domain entropy

• is malicious hash

• has suspicious fields

• has inner tld in subdomain
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B.2 Suspicious TLD One-Hot Encodings (n

= 6)

• suspicious tld tech

• suspicious tld info

• suspicious tld xyz

• suspicious tld top

• suspicious tld vip

• suspicious tld other

B.3 Certificate Field Presence Flags (n = 13)

• has TLSServerCertIssuer L

• has TLSServerCertIssuer OU

• has TLSServerCertIssuer ST

• has TLSServerCertSubject C

• has TLSServerCertSubject L

• has TLSServerCertSubject ST

• has TLSServerCertSubject O

• has TLSServerCertIssuer C

• has TLSServerCertIssuer O

• has TLSServerCertIssuer CN

• has TLSServerCertSubject OU

• has TLSServerCertSubject CN

• has TLSServerCertAltnames
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