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Summary

This report documents an internship project at IMDA where a classifier was
developed to distinguish malicious SSL/TLS certificates from benign ones.
A large corpus of certificate data was collected, parsed into 22 fields and
engineered into 32 features, including JA3 fingerprints, certificate lifetimes
and issuer information. Various unsupervised and supervised models (Isola-
tion Forest, One-Class SVM, Half-Space Trees, embeddings with k-NN, Ran-
dom Forest and Graph Convolutional Networks) were evaluated. The best-
performing model achieved an F1 score of 0.994 on a balanced, deduplicated

test set, demonstrating strong potential for detecting malicious certificates.

Subject Descriptors:
e [.2.6 Learning
e 1.5.1 Models (Trees, Neural nets, SVMs)
e 1.6.4: Model Validation and Analysis
e K.6.5 Security and Protection

Keywords: anomaly detection, machine learning, cybersecurity, unsuper-
vised learning, feature engineering

Implementation Software and Hardware: Python (VS Code IDE),
scikit-learn, pandas, NumPy; developed and tested on Lenovo ThinkPad
T14 running Windows 11.
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Chapter 1
Introduction

In this project, I am tasked to build a classifier to distinguish malicious
SSL/TLS Certificates from benign ones. Such digital certificates validate the
identity of a website, organization, or server and provide a trusted platform
for the user to connect and share information securely. However, malicious
certificates used by malware or other phishing attacks have become increas-
ingly common. By building anomaly detection models and replicating re-
search studies, the best F1 score I derived is 0.994 on a small set of unseen
test data.

1.1 Background

Secure Sockets Layer/Transport Layer Security (SSL/TLS) is a protocol to
create secure communications across networks. When a client connects to a
server, they perform a handshake to negotiate encryption methods and ex-
change certificates to verify identities. Such certificates validate the identity
of a website, and they come in a format called X.509, which is what you see
in [Figre 1)

For this project, we only focus on a few of these fields, namely Issuer
Name, Subject Name, Validity Period. I also have access to fields relating to
the JA3 fingerprint.

Another concept to grasp here is the certificate chain. A certificate is
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Figure 1.1: Typical fields of a X.509 Certificate
(What Is an x. 509 Certificate and How Does It Work?, 2024)

usually signed by a trusted root authority, known as a Certificate Author-
ity (CA). Root certificates can then sign intermediate certificates, which in
turn signs leaf certificates, conveying trust across the chain. However, some
certificates are self-signed, meaning that they are not signed by a reputable
CA, but rather sign themselves. Such certificates can be for testing purposes,
and are generally not trustable. In this project, we define chain length as
the number of certificates in this chain. This concept comes up again in the

features that I engineer.



Chapter 2

Data

2.1 Initial Dataset

I was given a sample dataset (n ~ 67k), followed by about 49 CSV files of
about 70k records each. I combined this bigger dataset into about 3 million
entries. For training, I took a sample from this bigger dataset.

Each CSV had 3 columns: certificates, JA3 fingerprints, and count. Cer-
tificates contained a JSON formatted string with each certificate in the chain
of trust being one JSON object. The JA3 fingerprints column contained a
string of dash separated numbers, detailing SSL/TLS Version, Cipher Suites,
Extensions, Elliptic Curves, and Elliptic Curve Point Formats. Count is a
residual of data processing.

I was also given a dataset (n = 2124) that had high probability of being
malicious from a certain malware family. I combined this malicious data with
an equal amount of assumed benign data from my initial dataset to create
a labelled validation dataset for evaluation metrics. For my unsupervised
learning models, I created a 50/50 split with my validation data. This dataset
(Dataset A), was split into 50% validation for hyperparameter tuning, and
50% unseen test set for evaluation.

For my supervised learning models (Dataset B), I split this into 60/20/20,
to 60% training, 20% validation, and 20% test.



2.2 Parsing Data

The parsed dataset contains a total of 22 fields, as detailed in Appendix A.
From the certificate data, both the issuer and subject information were ex-
tracted and split into individual columns for each attribute—mnamely: Coun-
try (C), Locality (L), Organization (O), Organizational Unit (OU), Common
Name (CN), and State (ST). This results in 12 fields (6 from the issuer and
6 from the subject). Additional certificate-related fields include the issuance
date, expiry date, and Subject Alternative Names (SANs), bringing
the total to 15 fields derived from certificate metadata.

Five additional fields were generated from JA3 fingerprint data, and
the final two fields—chain index and chain length—were introduced dur-
ing parsing of the certificate chain. For example, if a certificate chain consists
of three certificates, each certificate is assigned a chain index (0, 1, 2), while

the chain length remains fixed at 3 across all certificates in that chain.



Chapter 3
Feature Engineering

The total feature list consists of 31 features, where the full list is detailed in
Appendix B. Every subsection describes the part of the original data that
the features below it are engineered from. This section details a few of the
more interesting features that were derived, the rest are presence features or

one-hot encoded.

3.1 Issuer Name

3.1.1 Issued from Free Certificate Authorities (CA)

I have listed a few free certificate authorities:

e Let’s Encrypt e Cloudflare, Inc.
e ZeroSSL e Buypass
e SSL Corporation e CAcert Tech.

Taken from Ondara (2024) and online research, there is a correlation be-
tween certificates being issued from free CAs and malicious activity (Fasllija
et al., 2019).

10



3.1.2 CA Z-Score Lookup (Dropped Feature)

Some Certificate Authorities (CAs) are statistically more likely to issue mali-
cious certificates than others. Splunk (2023) conducted a large-scale analysis
of over 5 billion SSL/TLS certificates, producing a dataset that ranks
CAs based on their association with malicious activity. For each CA, Splunk
computed the proportion of risky certificates issued relative to their total
issuance volume, then transformed these proportions into z-scores based on
the standard normal distribution. Higher z-scores indicate greater likelihood
of malicious association.

Splunk provided two separate datasets: one for root CAs and another
for issuer CAs, each using a different parsing format. To match these
formats, a custom parser was implemented to generate canonical strings by

concatenating certificate fields with slashes. For example:

/C=US/ST=Washington/L=Redmond/O=Microsoft Corporation/ CN=Microsoft
ECC Root Certificate Authority 2017

These parsed strings were used to look up the corresponding z-scores in the
Splunk datasets.

Each certificate was then assigned a z-score based on this lookup. If the
issuer CA z-score was available, it was used directly. If not, the root CA
z-score was used. If neither was found, a default value of 0 was assigned.
The resulting z-score served as a feature to evaluate the trustworthiness of
the issuing CA.

However, this feature was ultimately dropped after an ablation
study conducted using HST (Half Space Trees) showed that its inclusion
did not improve model performance significantly. Moreover, the additional
processing overhead required to compute the z-scores was deemed unjustified

given the minimal performance gain.

3.1.3 Suspicious Fields

This feature leverages a blacklist compiled by Abuse.ch’s Top Malicious SSL

Common Names (2021), which identifies known Common Names frequently
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associated with malicious SSL certificates. Specifically, the feature checks
both the issuer Common Name and issuer Organization against entries
from this list.

Some malicious entries follow unconventional formatting patterns, such
as: C=US, ST=Denial, L=Springfield, 0=Dis. To ensure accurate detec-
tion, the check was extended to additional fields including Country (C),
State (ST), Locality (L), and Organization (O) for an exact field-wise
match.

A boolean flag, has_suspicious_fields, is set to True if any match is

found, indicating potential presence of suspicious certificate metadata.

3.2 Subject Name

3.2.1 Length of Domain

The domain is extracted by parsing the Subject Common Name (CN), specifi-
cally by stripping any left-side wildcard (e.g., * . example.com becomes example . com).
The feature length of domain represents the total number of characters in

the resulting domain string.

3.2.2 Entropy of Domain

To identify potentially algorithmically generated or obfuscated domain names,

the Shannon entropy of each domain is calculated using the following formula:

H(X) = _Zpi10g2pi
i=1
This entropy-based feature is adapted from Feature 7 of Fasllija et al.
(2019), and serves to quantify the randomness of character distribution within
the domain name. Higher entropy values may indicate suspicious or auto-

generated domains.
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3.2.3 Number of Hyphens (Dropped)

This feature counts the number of hyphens present in the domain name,
based on the hypothesis that longer, hyphenated domains may be indicative
of malicious behavior. This approach is adapted from Feature 8 of Fasllija et
al. (2019). However, after further evaluation, this feature was dropped due
to the observed distribution of hyphen counts in malicious certificates closely

mirroring that of the overall dataset.

3.2.4 Inner Top-Level Domain (TLD) in Subdomain

Adapted from Feature 5 of Fasllija et al. (2019), this feature flags the presence
of popular top-level domains (e.g., org, com, net) within inner subdomains.
As noted in their study, “attackers may include popular top-level domains in
the inner domain in order to mislead users that are familiar with them into
trusting a fraudulent website.” The detection of such patterns is therefore

considered suspicious.

3.2.5 Suspicious TLD

Inspired by Feature 4 of Fasllija et al. (2019), this feature targets domains
using newly introduced or low-cost TLDs, which have been widely exploited
by attackers. A reference list of suspicious TLDs was constructed using
Fasllija et al.’s dataset in conjunction with The Spamhaus Project (2025).
To operationalize this feature, a one-hot encoding scheme was applied to
capture the most frequently observed suspicious TLDs: .tech, .info, .xyz,

.top, and .vip. All remaining TLDs were grouped into an others category.

3.3 JA3 Fingerprint

3.3.1 JA3 Hash

This feature leverages the JA3 fingerprinting method, which encodes TLS
client hello parameters into a standardized fingerprint. By applying an MD5

13



hash to the original JA3 string, I compare the resulting hash against a known
list of malicious JA3 fingerprints provided by Abuse.ch (2021). If a match
is found, the boolean feature is malicious_hash is set to True, indicating a
suspicious TLS client configuration.

However, this feature was ultimately dropped due to a lack of relevance
in the available dataset. The malicious samples available did not contain
JA3 hash information, rendering the feature inapplicable. Additionally, the
potential for MD5 hash collisions and false positives further diminished its

reliability.

3.4 Issuer and Expiry Dates

3.4.1 Certificate Lifetime

Using the certificate’s issued date and expiry date fields, the certificate life-
time is computed by taking the difference between the two dates. After
converting both fields to pandas.Datetime format, the result is stored as
a numerical variable, cert_lifetime_days, representing the total validity

period of the certificate in days.

3.5 Subject Alternate Name (SAN)

3.5.1 SAN Count

The feature altnames_count records the total number of Subject Alternate
Names (SANs) present in a certificate. Anomalously high or low SAN counts

may indicate malicious intent or misconfiguration.

3.5.2 Average SAN Shannon Entropy (Dropped)

The feature san_entropy_avg calculates the average Shannon entropy across
all SANs in a given certificate. Algorithmically generated SAN entries are
expected to exhibit higher entropy. However, after plotting a histogram of

this feature, its distribution was found to closely resemble that of the domain

14



entropy feature, offering little additional signal. As a result, this feature was

dropped.

3.5.3 Presence of Common Name (CN) in SAN

The boolean feature is CN_in SAN checks whether the Subject Common
Name (CN) is also listed among the SANs. While this condition doesn’t
occur in only 0.66% of all certificates, further analysis showed a notable dif-
ference in its distribution between malicious and benign certificates. This

suggests that it may be a useful feature and is thus retained.

3.6 Miscellaneous

3.6.1 Number of Missing Fields

The feature number of missing fields counts how many expected fields
are absent in a given certificate. According to NCC Group (2021), there
is a statistical relationship between the number of missing fields and the

likelihood of a certificate being malicious.

3.6.2 Chain Length

This feature captures the length of the certificate’s chain. While only the
leaf certificate is retained for modeling, the total chain length is preserved as

a numerical feature, chain_length.

3.6.3 Presence Features

To retain feature variance across certificates, a set of 13 binary presence
indicators was engineered. These include boolean flags for the presence of
common fields in both the Subject and Issuer sections: Country (C), State
(ST), Locality (L), Organization (O), Organizational Unit (OU), Common
Name (CN), and Alternate Names (SAN). Each feature indicates whether

the corresponding field is present in the certificate.
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Chapter 4

Results

Model Accuracy | Precision | Recall | F1 Score
Isolation Forest 0.9463 0.9181 0.9791 0.9476
OCSVM 0.9651 0.9470 | 0.9848 | 0.9655
HST 0.9228 0.8751 0.9848 0.9267

Table 4.1: Unsupervised Learning Performance Metrics on Balanced, De-

duplicated Unseen Test Set.
Model Accuracy | Precision | Recall | F1 Score
Embeddings + kNN 0.9240 0.9357 0.9102 0.9228
GCN 0.9424 0.9944 0.8889 0.9387
Random Forest 0.9941 0.9886 1.0000 | 0.9943

Table 4.2: Supervised Learning models metrics on Balanced, De-duplicated
Unseen Test Set.

The tables above summarize the performance of both unsupervised and
supervised models on a balanced, de-duplicated test set. Among the unsuper-
vised models, OCSVM achieved the best overall results, with the highest F1
score and recall. For supervised models, Random Forest significantly outper-
formed the rest, attaining near-perfect precision, recall, and F1 score. These
results highlight the effectiveness of supervised learning when labeled data is

available, while also showing that OCSVM is a strong choice in unsupervised
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settings. However, the approaches will be compared in the following section

and a recommendation will be given at the end.
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Chapter 5

Approaches

5.1 Clustering

To explore unsupervised detection of malicious certificates, I initially exper-
imented with the KMeans algorithm. Using the elbow method, an optimal
value of k& = 21 was estimated. While Gémez et al. (2023) used clustering
effectively with labeled malware family data, the absence of such labels in

this study limited interpretability, and clustering was not pursued further.

5.2 Isolation Forest

Isolation Forest was selected as a primary unsupervised approach for de-
tecting anomalous TLS certificates due to its scalability and interpretability.
Originally proposed by Liu et al. (2008), this method constructs an ensemble
of randomly generated binary isolation trees, where each split selects a feature
and threshold at random. Anomalous certificates—being rare and distinct—
tend to be isolated in fewer partitions, resulting in shorter paths and higher
anomaly scores. The algorithm’s linear time complexity and minimal mem-
ory requirements make it particularly well-suited for large-scale datasets such
as those used in this project. Moreover, recent studies, such as Ostertag and
Stanek (2024), have validated its effectiveness in detecting anomalies within

X.509 certificate transparency logs. In the context of this work, Isolation
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Forest achieved an F1 score of 0.9476 on a balanced, de-duplicated test set,
demonstrating its utility as a robust baseline for certificate anomaly detec-

tion.

5.3 Local Outlier Factor (LOF)

The Local Outlier Factor (LOF) algorithm is designed to identify anomalous
data points by comparing the local density of points to their neighbors. It
operates by measuring how much a data point deviates from its surrounding
points in terms of density. While LOF is effective in detecting outliers in
certain contexts, its quadratic time complexity makes it computationally
expensive, particularly for large datasets. Despite initial expectations, the
LOF model performed poorly on this dataset, and further analysis indicated
that it was not suited for this task. Consequently, LOF was excluded from

the final evaluation.

5.4 One-Class Support Vector Machines (OCSVM)

One-Class SVM is a variant of the traditional SVM algorithm, specifically
designed for outlier and novelty detection tasks. Unlike traditional SVMs,
which are typically used for binary classification, One-Class SVM trains ex-
clusively on data from a single class, referred to as the target class. The
algorithm learns a boundary or decision function that captures the distribu-
tion of the target class in the feature space, thereby modeling the normal
behavior of the data (Mounish V, 2024).

However, One-Class SVM has a quadratic time complexity, which can
become computationally expensive with large datasets. Despite this, initial
results indicate that it performed well on this project, and it emerged as the
best-performing model on my dataset, achieving high accuracy and F1 score

compared to other unsupervised methods.
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5.5 Half Space Trees (HSTs)

NCC Group (2021) used HSTs on live certificate streams and consistently
identified anomalies. This is an ensemble method, where multiple trees are
built and results are aggregated. This approach is the most promising one,

and hence I will delve deeper into explaining the algorithm.

5.5.1 Introduction

Tan et al., (2011) defines each HS-Tree consists as a set of nodes, where
each node captures the number of data items (i.e. mass) within a particular
subspace of the data stream. Mass is used to profile the degree of anomaly
because it is simple and fast to compute in comparison to distance-based or

density-based methods.

5.5.2 Methodology

The algorithm segments the data stream into 2 consecutive windows of fixed
size (n = 250) — the reference window and the latest window. During the
initial stage of the anomaly detection process, the algorithm learns the mass
profile of data in the reference window. Then, the learned profile is used
to infer the anomaly scores of new data subsequently arriving in the latest
window. New data that fall in high-mass subspaces is construed as normal,
whereas data in low-mass or empty subspaces is interpreted as anomalous.
As new data comes in, the algorithm learns its mass profile as well. When
the latest window is full, the newly recorded profile is used to override the old
profile in the reference window — so it always stores the latest profile to score
the next batch. Now, the latest window erases its stored profile to capture

that of the next batch. This repeats as long as the stream exists.

5.5.3 Definition

Tan et. al defines a Half Space Tree (HS-Tree) of depth h as a full binary

tree consisting of 2"t — 1 nodes, where all leaves are at the same depth h.
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A tree is constructed by picking a randomly selected feature. Then, we split
the feature space in half (the library that I use, River, randomly splits the
feature space with padding instead), creating a left and right child for the

node. This continues until maximum depth is reached.

5.5.4 Algorithm

Before creating a tree, the algorithm initialises a work space, randomly gen-
erates a synthetic range for each feature, creating a unique coordinate space
for every Half-Space Tree. This allows the trees to be constructed without
seeing any data, while maintaining an ensemble of diverse HS-Trees.

Once trees are constructed, we record the mass profile of the data by
traversing every instance through each tree. At each node, we increment the
mass count before recursively updating the mass count for subsequent levels
of the tree.

5.5.5 Anomaly Score

We score data based on their mass distribution. Let s,; be the score of a
test instance x at a particular node n of a particular tree ¢, and a particular

maximum depth d. Let m; be the mass of a node at depth level i of the tree.
Spt = My % 2!

We keep adding the node scores until we reach a terminal node. A terminal
node here refers to a node that reached the maximum depth, or a node that
contains limit instances or fewer, where limit is a parameter that defaults
to 0.1w (window size).

The tree score, s; is then the summation of the scores of each node along

the path, increasing in depth.

St = Z Sn,t

The anomaly score, S will then be the summation of each tree score in the

21



ensemble.

S:ZSt

teT
To fit machine learning convention, we take the inverted score, S as 1 — S

so that a value closer to 1 is malicious, and a value closer to 0 is benign.
S'=1-8

To interpret this, a node with smaller mass is likely to contain anomalous
data points due to the lack of similar points. Anomalies will end up with lower
scores then. The time complexity and space complexity for this algorithm is

amortised constant.

5.6 Embeddings + k-Nearest Neighbors (kNN)

Based on Shashwat et al., (2024), I try their approach to classifying certifi-
cates based on putting the data through a Large Language Model (LLM),
obtaining the embedding, and classifying a new certificate based on its near-

est neighbors. The methodology used in the paper consisted of a few steps.
1. Clean Data - fill missing values with NA
2. Process certificates and combine into issuer and subject string.

3. Embed issuer and subject string with Character BERT (C-BERT) sep-

arately and combine embeddings.
4. Setting Up a FAISS Vector Database for Similarity Search
5. k-NN Classification with Majority Voting
6. Evaluation

While this method relies on supervised data, I use our small set of curated and
labelled benign and malicious data to train and validate this model. From
the original parsed benign and malicious certificates, I drop all columns but

the 12 fields describing the certificate, such as the Country, Locality, State,
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Common Name, Organization, and Organizational Unit. After removing
duplicates, I decided to follow the parsing and embedding strategy used in
the paper by filling in empty fields with "NA”, and joined the fields together
with commas as a delimiter. I embedded both issuer and subject separately,
and concatenated them together. I took benign and malicious data in a 1:1
ratio. The resulting dataset (n = 2532) was split into train (n = 2025) and
validation (n = 507) sets.

After embedding, I store the vectors in a Facebook Al Similarity Search
(FAISS) vector database, and conduct kNN search with the validation set.
While the paper suggested an optimal k of 5, I did some tuning and found
that my results achieved a result of k = 3. This approach was useful in under-
standing clustering of certificates, as similar certificates were often grouped

together.

5.7 Contrastive Learning

Han et al. (2024) proposed a contrastive learning method for unsupervised
malicious network traffic detection. Contrastive learning, a form of self-
supervised learning, aims to learn representations by comparing positive and
negative pairs of data points. In the context of anomaly detection, the
method works by embedding data points in a feature space where similar
instances (positive pairs) are close together and dissimilar instances (neg-
ative pairs) are far apart. This technique has shown promising results in
detecting anomalies in network traffic, where the focus is on learning useful
representations without requiring labeled data.

While contrastive learning could offer valuable insights for my use case,
especially for detecting anomalies in TLS certificates, the complexity of im-
plementing the method and the need for additional computational resources
made it infeasible for this project. As a result, contrastive learning was not

pursued, but it remains an area of potential exploration for future work.

23



5.8 2-Layer Certificate Graph Convolutional
Network (GCN)

Liu et al. (2022) proposed a graph-based approach to detect malicious cer-
tificates by modeling the problem as a graph. In this approach, certificate at-
tributes and certificate documents are treated as nodes, while co-occurrence
information between attributes forms the edges between nodes. I imple-
mented this method using a labeled dataset with 4220 samples, consisting
of a balanced 1:1 split of benign and malicious certificates. The dataset was
divided into 80% for training, 10% for validation, and 10% for testing. The
training and validation sets were combined to build the graph corpus, while
the training set was used for model training. The validation set was masked
during training, and the final 10% of the dataset was used to construct a
separate graph for the test set.

This approach can be categorized as transductive learning (where the
validation set is part of the graph during training) and inductive learning
(where a separate graph is used for the test set). The distinction between
these two methods highlights different strategies for utilizing graph-based

models in machine learning.

5.8.1 Parsing

The certificate data is parsed into a list of lists, where each list represents an
individual certificate. Each field within the certificate is treated as a separate
item, and multiple items within the same field (e.g., Alternate Names) are

flattened and separated by commas.

5.8.2 Graph Nodes and Edges

In this graph-based approach, nodes represent both certificates and their
attributes. Edges between certificates and attributes are weighted using
Term Frequency-Inverse Document Frequency (TF-IDF). Here, term fre-

quency refers to how often an attribute appears in a certificate, while inverse
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document frequency quantifies the rarity of an attribute across certificates.
This weighting mechanism helps assess the importance of each attribute in
the graph.

For edges between attributes (Attribute-Attribute), we calculate Point-
wise Mutual Information (PMI), which measures the co-occurrence of two

attributes compared to their individual frequencies.

5.8.3 Building the Graph

The graph is represented as an adjacency matrix, using a sparse matrix
format from SciPy for memory efficiency. Each node is one-hot encoded
as a vector, following the approach used in the original paper. The graph
is constructed using the PyTorch Geometric framework, which allows for

efficient graph data handling and model training.

5.8.4 Training the Model

The architecture replicates the design in Liu et al. (2022), employing a
two-layer Graph Convolutional Network (GCN) consisting of: Graph Con-
volution — ReLU activation — Dropout — Graph Convolution — Linear
output layer. They suggest that any more layers result in a drop in model

performance.

5.8.5 Results

The transductive learning approach, where the validation set is part of the
graph corpus but is masked during training, achieved an F1 score of 0.9387.
In contrast, the inductive learning approach, where the test set is kept sep-
arate and a new graph is created for testing, resulted in an F1 score of only

0.5674.

5.8.6 Conclusion

Due to the poor performance on the inductive test data and the complex-

ities involved in graph data parsing, this approach is not recommended for
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production use.
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Chapter 6

Validation and Explanation

6.1 Locally Interpretable Model-Agnostic Ex-
planation (LIME)

With the predictions of my models, now it was time to validate and explain
the predictions. However, most of my anomaly detection models were black
boxes, and there were no inbuilt feature importance attributes I could find.
I started by running LIME on my models to reveal the top features that
contributed to the classification. However, as LIME is a local model, the
results were not generalizable globally. LIME on different models also yield
different results. As seen in [Figure 6.1} the results were confusing to analyse
and often picked features that didn’t seem to align with domain knowledge.
There was a need for better explainability in my models. Hence, I turned to

supervised learning, specifically Random Forest.

6.2 Random Forest Feature Importance

I also evaluated feature importance using a Random Forest (RF) model
trained on a small labelled dataset. While this approach provides a global
view of feature relevance, the results diverged significantly from
those obtained through LIME. Yet, this was more aligned with domain knowl-
edge. With the good results obtained from the RF model, this validated the
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Figure 6.1: LIME on HST, True Positive Instance

features that were picked.

6.3 Half Space Trees Feature Importance

Diving deeper into HSTs, I managed to print out and parase the actual
decision trees that were in the model. By referring to the source code, I
created a visualizer that showed where anomalies were isolated. By looking
at this, I could gain a clearer idea of which features resulted in anomalies.
In I traced out the decision path for a particular benign sample,
and this helped to explain the predictions in greater detail.
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Random Forest Feature Importance
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Figure 6.2: Feature Importance for Random Forest

Decision Path for Sample in Tree #1. Tree Score: 0.0545. Percentage of Total Score: 0.09 (NORMAL)
9

0.200

Figure 6.3: Half Space Trees Decision Path for a Benign Sample
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Chapter 7
Reflections

Throughout this project, I faced a number of challenges that required both
technical and problem-solving skills. One of the primary issues was the com-
putational complexity, as the large dataset (approximately 9 million rows)
required extensive processing time, often taking 2-3 hours per cycle, which I
managed by running tasks overnight. Additionally, working with data pre-
sented a learning curve, as I had little prior experience with data analysis
and had to quickly become proficient in using Pandas for data manipulation.
My initial use of Python notebooks became disorganized, and I eventually
refactored the code into modular classes, improving both the clarity and
efficiency of my work. Another significant challenge was scaling the data
correctly. Initially, I scaled the training and malicious datasets separately,
leading to inflated F'1 scores due to mismatched data distributions. After
recognizing this, I ensured consistent scaling by applying the same trans-
formation to both the training and validation sets. Feature selection also
posed challenges, as some features were dropped due to skew or redundancy,
which improved the model’s performance. Lastly, the lack of labeled data for
training and validation was a constraint, but by combining a small labeled
dataset of malicious certificates with assumed benign data, I was able to pro-
ceed with model evaluation. However, the limited diversity of the malicious
data meant that the model’s generalization was constrained to only a few

malware families. These challenges were valuable learning experiences that
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contributed to the overall success of the project.

The bulk of this project was built with Python. Libraries used include:
scikit-learn, numpy, pandas, LIME, Matplotlib. I briefly used River, Seaborn,
PyTorch, and Transformers. I gained familiarity with unsupervised learning
models like Isolation Forest, Local Outlier Factor, One Class SVM, K Means
Clustering, and supervised learning methods like K Nearest Neighbors and
Random Forest. I also dipped my toes in Large Language Models such as
Character BERT), learning how to embed text and store in a vector database
like FAISS. I gained experience working with Graph Convolutional Networks,
and tinkered with PyTorch Geometric for graph data.
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Chapter 8
Conclusion

This project provided valuable insights into the application of machine learn-
ing techniques for detecting malicious TLS certificates. Through the use of
various unsupervised and supervised learning models, I was able to assess
the effectiveness of different algorithms in identifying anomalies in certificate
data. The results highlighted the strengths of models like One-Class SVM
and Random Forest, with the latter providing the best overall performance
on the dataset.

Ultimately, I learnt that F1 score is not everything when it comes to
evaluating a model. Constraints like implementation, time complexity, and
interpretability are paramount in ensuring that the model fits into a process-
ing pipeline, and that its predictions can be trusted.

Moving forward, I hope that the methodologies and lessons from this
project will be valuable in tackling similar problems in the future, especially

in the domain of cybersecurity.
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Appendix A

Initial Data Columns

10.

11.

. TLSServerCertIssuer C
. TLSServerCertIssuer L
. TLSServerCertIssuer 0
. TLSServerCertIssuer_CN
. TLSServerCertIssuer_0U
. TLSServerCertIssuer ST
. TLSServerCertSubject_C
. TLSServerCertSubject_L

. TLSServerCertSubject_0

TLSServerCertSubject_CN

TLSServerCertSubject_ST

A-1

12.

13.

14.

15.

16.

17.

18.

19.

20.

TLSServerCertSubject_0U
TLSServerCertIssuedDate
TLSServerCertExpiryDate
TLSServerCertAltnames
SSL/TLS Version

Cipher Suites
Extensions

Elliptic Curves (Groups)

Elliptic Curve Point Formats

. chain_index

. chain_length



Appendix B

Full List of 31 Features

B.1 Engineered Features (n = 12)
e chain_length
e zscore
e cert_lifetime days
e altnames_count
e is CN_in_SAN
e number_of missing fields
e issued_from_free CA
e length of domain
e domain_entropy
e ismalicious_hash
e has_suspicious_fields

e has_ inner_tld_in_subdomain

B-1



B.2 Suspicious TLD One-Hot Encodings (n
e suspicious_tld_tech
e suspicious_tld_info
e suspicious_tld xyz
e suspicious_tld_top
e suspicious_tld_vip

e suspicious_tld_other

B.3 Certificate Field Presence Flags (n = 13)

e has TLSServerCertIssuer_L

e has TLSServerCertIssuer_ QU
e has TLSServerCertIssuer_ST
e has_TLSServerCertSubject. C
e has_TLSServerCertSubject_L
e has_TLSServerCertSubject_ST
e has_TLSServerCertSubject. 0
e has TLSServerCertIssuer C

e has TLSServerCertIssuer. 0

e has TLSServerCertIssuer_CN
e has TLSServerCertSubject_0U
e has TLSServerCertSubject_CN

e has TLSServerCertAltnames

B-2
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